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Abstract
We discuss restrictions on the existence of the diffusion pole in the translationally invariant
diagrammatic treatment of disordered electron systems. We analyze Bethe–Salpeter equations
for the two-particle vertex in the electron–hole and the electron–electron scattering channels
and derive for systems with electron–hole symmetry a nonlinear integral equation that the
two-particle irreducible vertices from both channels must obey. We use this equation and a
parquet decomposition of the full vertex to set restrictions on an admissible form of the
two-particle singularity induced by probability conservation. We find that such a singularity in
two-particle functions can exist only if it is integrable, that is, only in the metallic phase in
dimensions d > 2.

1. Introduction

Scattering of free charge carriers on impurities and lattice
imperfections can lead at low temperatures to a metal–
semiconductor transition. There are two qualitatively different
scenarios how a metal can turn insulating due to excessive
scatterings on impurities. In the first case the metal–insulator
transition materializes in substitutional alloys when charge
carriers are expelled from the Fermi surface and an energy gap
develops. This transition, called a split band, is qualitatively
well understood and quantitatively well modeled by a mean-
field solution [1, 2]. The second type of a metal–insulator
transition is much more complicated and up to now not
completely understood. Electrons in a metal with random
impurities can lose their ability to diffuse on macroscopic
scales. Such a scenario was first suggested by Anderson [3]
and is now called a Anderson localization transition.

One of the principal obstacles in understanding the
Anderson localization transition is our inability to describe
the vanishing of diffusion of electrons in random media
analytically even in its simplest model version. Hence only
approximate quantitative results are available both analytically
and numerically. We have not yet succeeded in reconciling

results from analytic and numerical approaches. Analytic,
mostly diagrammatic and field-theoretic approaches in the
thermodynamic limit indicate that the critical behavior at
the Anderson localization transition fits the one-parameter
scaling scheme with a single correlation length controlling
the long-range fluctuations [4, 5]. On the other hand, an
increasing number of numerical studies of the Anderson
localization transition in finite volumes suggest that, instead of
homogeneous, translationally invariant parameters one has to
take into consideration distributions of conductances or local
particle densities [6, 7]. The two different methodological
approaches, analytic and numerical, disagree not only on
the number of relevant controlling parameters needed to
understand Anderson localization but also on the critical
behavior and the values of the critical exponents [8, 9]. Neither
of these approaches is, however, absolutely conclusive in
delivering ultimate answers.

In case of a disagreement between results from two
rather well-established and otherwise reliable methods one
has to revisit the assumptions under which either results were
derived and to which restrictions they are subject. One
of the most important features used in the description of
the critical behavior of an Anderson localization transition
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is a singular low-energy behavior of the density–density
correlation function of disordered systems. This singularity
has the form of a resolvent of a diffusion equation and is
called the diffusion pole. The existence of the diffusion
pole and a connection of the diffusion constant with the
conductivity are consequences of conservation laws in random
systems [10]. Conservation laws should be a firm part of
any reliable theory. We, however, showed recently that an
asymptotic solution of the Anderson model of noninteracting
electrons in high spatial dimensions does not fully obey
the conservation of probability [11]. We suggested a
qualitative explanation for such an unexpected behavior but,
more importantly, we amassed arguments that unrestricted
compliance with the conservation law in random systems is
in conflict with analyticity of the spectral function [12, 13].
Since a discussion about the form of the pole in the density
response function is still ongoing [14, 15], we trace in this
paper the origin of the diffusion pole and set exact restrictions
on the form of the singularity in the two-particle vertex
caused by conservation laws in the translationally invariant
description of disordered systems. We first thoroughly analyze
the assumptions used to derive the diffusion pole and then
derive the most general admissible form of this singularity
without referring or resorting to any specific approximation.
We find that in electron–hole symmetric systems the diffusion
pole must be integrable in momentum space.

2. Definitions and assumptions

We model the system of noninteracting electrons by a lattice
gas described by an Anderson Hamiltonian [3]:

Ĥ =
∑

k

|k〉ε(k)〈k| +
∑

i

|i〉Vi〈i | (1)

used to capture the impact of randomness on the electronic
structure of metallic alloys as well as to understand the
vanishing of diffusion in the limit of strong randomness.
The first, homogeneous, part of this Hamiltonian is kinetic
energy and is diagonalized in momentum space (Bloch waves).
The second sum runs over lattice sites and describes a site-
diagonal random potential. Values Vi at different positions are
uncorrelated and follow a probability distribution P(Vi ). This
term is diagonalized in the direct space by local Wannier states.
The two operators do not commute, quantum fluctuations
become important and the full Anderson Hamiltonian cannot
be easily diagonalized. The only way to keep analytic control
of the behavior of equilibrium states of the Anderson model
is to go directly to the thermodynamic limit. Standardly
it is approached by applying the ergodic theorem, that
is, summation over lattice sites equals the configurational
averaging.

Ergodicity itself, however, does not simplify the process
of averaging over randomness. Another assumption must
be adopted to master this problem. We assume that the
thermodynamic limit can be performed independently term
by term in the expansion in powers of the random potential.
It means that we expect that the configurationally averaged
perturbation expansion in the random potential converges for
all quantities of interest.

The thermodynamic limit has an important simplifying
consequence for macroscopic (averaged) quantities. The
spectrum of a random Hamiltonian in the thermodynamic
limit is invariant with respect to lattice translations. It
means that operators Ĥ and T̂R Ĥ T̂ †

R , where T̂R is the
operator of translation with a lattice vector R, have an
identical spectrum of eigenvalues with translationally shifted
eigenvectors. A lattice translation by a vector Rn applied
to the Anderson Hamiltonian from equation (1) generates
a new one,

∑
k |k〉ε(k)〈k| + ∑

i |i + n〉Vi 〈i + n| having
the same distribution of random energies. Unless we
break translational symmetry in thermodynamic states, we
are unable to distinguish translationally shifted Hamiltonians.
We cannot, however, break translational invariance of the
thermodynamic states arbitrarily, since their symmetry should
be in agreement with the spatial distribution of the eigenstates
of the Hamiltonian for the given configuration of the random
potential. Since we do not know this spectrum, we must
treat all lattice translations of the Hamiltonian as equivalent
and instead of one configuration of the random potential we
describe the whole class of translationally shifted equivalent
Hamiltonians T̂R Ĥ T̂ †

R . In this way we cannot distinguish
directly between extended and localized eigenstates of the
random potential, since the localized states are represented by
a class of vectors differing by lattice translations.

The natural basis for translationally invariant quantities
is formed by Bloch waves labeled by quasimomenta. We
generically denote k, q as fermionic and bosonic (transferred)
momenta, respectively. The fundamental building blocks of
the translationally invariant description of disordered electrons
are averaged one- and two-particle resolvents G(k, z) and
G(2)

kk′(z+, z−; q), where z+ = E + ω + iη and z− = E − iη
are complex energies with E standing for the Fermi energy,
ω for the bosonic transfer frequency (energy) and η is a
(infinitesimally) small damping (convergence) factor. We
adopt the electron–hole representation for the two-particle
Green function with k and k′ for incoming and outgoing
electron momenta. The bosonic momentum q measures the
difference between the incoming momenta of the electron and
the hole. Energies of the electron and the hole z+, z− in
systems with noninteracting particles are external parameters.

The averaged one-electron resolvent in disordered systems
can be represented as in many-body theories via an irreducible
vertex—the self-energy �(k, z). We can write a Dyson
equation for it:

〈〈
k

∣∣∣∣
1

z1̂ − Ĥ

∣∣∣∣k
′
〉〉

av

= δ(k − k′)
z − ε(k) − �(k, z)

. (2)

The self-energy �(k, z) stands for the impact of scatterings
of the electron on random impurities. Knowledge of the self-
energy is then sufficient to determine the energy spectrum,
spectral density and, in general, all aspects of propagation of
single particles in disordered media.

The two-particle resolvent G(2) can then be represented
via a two-particle vertex � defined from an equation:

G(2)

kk′(z+, z−; q)

=
〈〈

q + k, k

∣∣∣∣
1

z+ − Ĥ
⊗ 1

z− − Ĥ

∣∣∣∣k
′, q + k′

〉〉

av
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≡
〈〈

k

∣∣∣∣
1

z+ − Ĥ

∣∣∣∣k
′
〉〈

q + k′
∣∣∣∣

1

z− − Ĥ

∣∣∣∣q + k
〉〉

av

= G(k, z+)G(q + k, z−)[δ(k − k′)
+ �kk′(z+, z−; q)G(k′, z+)G(q + k′, z−)] (3)

where ⊗ denotes the direct product of operators. The
two-particle vertex represents a disorder-induced correlation
between simultaneous propagation of two quasiparticles.
Analogously to the self-energy it measures the net impact of
elastic scatterings on the random potential.

The two-particle vertex � can be further simplified by
introducing an irreducible vertex � playing the role of
a two-particle self-energy. The irreducible and the full
vertex are connected by a Bethe–Salpeter equation. Unlike
the one-particle irreducibility, the two-particle irreducibility
is ambiguous [16]. There are two types of two-particle
irreducibility in systems with elastic scatterings only, electron–
hole and electron–electron. They are characterized by different
Bethe–Salpeter equations. The Bethe–Salpeter equation in the
electron–hole scattering channel then is

�kk′(q) = �eh
kk′(q)

+ 1

N

∑

k′′
�eh

kk′′(q)G+(k′′)G−(q + k′′)�k′′k′(q). (4a)

We suppressed the frequency variables in equation (4a), since
they are not dynamical ones. They can be easily deduced from
the one-electron propagators G±(k) = GR,A(k) ≡ G(k, z±)

used there.
The other nonequivalent representation of the two-particle

vertex is obtained if we sum explicitly multiple scatterings of
two electrons (holes). The alternative Bethe–Salpeter equation
then is [16]

�kk′(q) = �ee
kk′(q) + 1

N

∑

k′′
�ee

kk′′(q + k′ − k′′)

× G+(k′′)G−(q + k + k′ − k′′)�k′′k′(q + k − k′′). (4b)

We introduced an irreducible vertex in the electron–electron
scattering channel �ee. Irreducible vertices �eh and �ee do
not include isolated pair electron–hole and electron–electron
scatterings, respectively.

3. Diffusion pole and electron–hole symmetry

Noninteracting particles scattered on impurities are marked by
a diffusion pole. The low-energy limit of a special matrix
element of the two-particle resolvent, electron–hole correlation
function, has the following asymptotics for q → 0 and ω/q →
0:

	RA
E (q, ω) = 1

N2

∑

kk′
GRA

kk′(E + ω, E; q)

.= 2πnF

−iω + D(ω)q2
+ O(q0, ω0) (5)

where nF is the density of one-particle states at the Fermi
level [10]. We used an abbreviation for the energy arguments
GRA

kk′(E + ω, E; q) ≡ G(2)
kk′(E + ω + i0+, E − i0+; q).

The low-energy electron–hole correlation function becomes a
propagator of a diffusion equation with a dynamical diffusion

constant D(ω). The dynamical form of the diffusion constant
is introduced so that both possible mobility regimes in
disordered systems, metallic and localized, can be covered by
this form of singularity. If D(0) = D > 0 then we are in the
metallic, diffusive regime and if limω→0 D(ω)/(−iω) = ξ 2 >

0 we are in the localized, diffusionless regime. This singularity
with a dynamical diffusion constant D(ω) is generally called a
diffusion pole. Its origin is in probability conservation leading
to a diffusive behavior in the metallic phase. It is called the
diffusion or Berezinski pole also in the localized phase with
D(0) = 0 even though it generates no diffusion [17–19].

This form of a low-energy singularity is not evident
and to prove it one has to use Ward identities connecting
one- and two-particle averaged functions. Ward identities
reflect conservation laws. In disordered noninteracting systems
we have probability (mass or charge) conservation. It is
mathematically equivalent to completeness of the Hilbert space
of Bloch waves. First the Ward identity due to charge
conservation was derived for disordered systems within the
mean-field approximation by Velický [20] and later extended
beyond this approximation in [16]. It is a consequence of an
operator identity

1

z+ − Ĥ

1

z− − Ĥ
= 1

z− − z+

[
1

z+ − Ĥ
− 1

z− − Ĥ

]
(6)

where the multiplication is the standard operator (matrix) one.
This identity holds for any one-particle Hamiltonian. In the
thermodynamic limit we must, however, average this identity
and the averaging procedure need not conserve all its aspects
when projected onto translationally invariant states [12]. When
using the above identity in the evaluation of the homogeneous
part of the electron–hole correlation function, that is q = 0, we
obtain

	RA
E (0, ω)

.= 2πnF

−iω
. (7)

No spatial fluctuations (q �= 0) of the correlation function in
the low-frequency limit can be deduced from the Velický–Ward
identity. To derive the spatial behavior of the diffusion pole in
equation (5) one has to resort to another relation introduced
by Vollhardt and Wölfle [21]. It utilizes the Dyson and a
Bethe–Salpeter equation, equation (2) and equation (4a), and
relates the one- and two-particle irreducible functions � and
�eh, respectively. It is

�R(q + k, E + ω) − �A(k, E) = 1

N

∑

k′
�RA

kk′(E + ω, E; q)

× [GR(q + k′, E + ω) − GA(k′, E)] (8)

and was proved diagrammatically (perturbatively). Using
the Bethe–Salpeter equation one can show that in the
homogeneous limit q = 0 this identity reflects the continuity
equation and hence is equivalent to the Velický–Ward identity.
Equation (8) together with the Bethe–Salpeter equation in the
electron–hole channel are then used to show that the long-
distance fluctuations of the low-energy limit of the electron–
hole correlation function are controlled by a dynamical
diffusion constant D(ω) [10]. Note that identity (7) holds for
both pure and random systems, while equation (8) is nontrivial

3
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only for disordered systems. The actual form of the diffusion
pole, that is, the singularity from equation (5) is physically
relevant only for a spatially fluctuating regime with q → 0.
The purely homogeneous case itself, q = 0 as in equation (7),
may be a singular point and need not be pertinent for the
form of spatial fluctuations with q > 0. This holds for both
diffusive, D(0) = D > 0, and diffusionless, D(0) = 0,
regimes. We need Bethe–Salpeter equations to assess properly
the long-range spatial correlation of the propagation of two
quasiparticles (q > 0) expressed by the low-energy limit of
the electron–hole correlation function in equation (5).

Another important feature of noninteracting electrons on
a bipartite lattice without external magnetic field and spin–
orbit coupling is the electron–hole symmetry. It consists of
simultaneous time inversion and charge conjugation. Finally,
it is equivalent in the thermodynamic limit to reversing the
direction of the particle propagation, that is k → −k. The
electron and the hole interchange their roles. The electron–
hole invariance for the one-particle propagator then means
G(k, z) = G(−k, z). Electron–hole transformation leads to
nontrivial symmetries when applied onto one of the fermion
propagators in two-particle functions. It can be represented
either by reversing the electron line leading to a transformation
k → −k′, k′ → −k, q → Q or by reversing the hole
propagator k → k, k′ → k′, q → −Q. We denoted Q =
q + k + k′. We then obtain two symmetry relations for the full
two-particle vertex:

�kk′(q) = �−k′−k(Q) = �kk′(−Q). (9a)

The two-particle irreducible vertices are not invariant with
respect to the electron–hole transformation, since the electron–
hole vertex is transformed onto the electron–electron one
and vice versa. We then have the following electron–hole
symmetry relations:

�ee
kk′(q) = �eh

−k′−k(Q) = �eh
kk′(−Q). (9b)

These relations say that the Bethe–Salpeter equation (4a)
transforms upon interchanging an electron by a hole in one
particle line onto the Bethe–Salpeter equation (4b) and vice
versa. When the invariance with respect to the electron–
hole transformation is applied to the two-particle resolvent we
obtain

GRA
kk′(E + ω, E; q) = GRA

kk′(E + ω, E; −q − k − k′). (10)

Since the two-particle resolvent contains the diffusion pole for
ω, q2 → 0, the same singularity must emerge with equal
weight also in the limit ω, (k + k′ + q)2 → 0.

The uncorrelated propagation of electrons in a random
potential is regular and the diffusion pole must emerge in
the vertex function �. Taking into account the electron–hole
invariance we can single out the singular parts of the electron–
hole symmetric two-particle vertex and obtain

�RA
kk′ (q, ω) = γ RA

kk′ (q, ω) + ϕRA
kk′

−iω + D(ω)q2

+ ϕRA
kk′

−iω + D(ω)(q + k + k′)2
. (11)

The reduced vertex γ RA has a marginal and thermodynamically
irrelevant singularity for ω → 0 at k = k ′ = q = 0. It can,
nevertheless, display another singular behavior in fermionic
variables k, k′ that is not derivable from the diffusion pole.
Such a singularity must not, however, affect the form of
the diffusion pole in the electron–hole correlation function
for q → 0. The second term on the right-hand side of
equation (11) dominates in the leading order of the limit q →
0, ω → 0 while the third one is in the limit q + k + k′ → 0,
ω → 0.

Equation (11) is the most general form of the two-
particle vertex reproducing the diffusion pole in the correlation
function 	. The singularity for q → 0 is the diffusion pole
while the other for q + k + k′ → 0 is called the Cooper
pole and is caused by multiple electron–electron scatterings.
To conform this representation with equation (7) we have to
satisfy a normalization condition that in the metallic phase
(D(0) > 0) is

1

N2

∑

kk′
|G+(k)|2ϕRA

kk′ |G+(k′)|2 = 2πnF. (12)

4. Parquet equations with electron–hole symmetry

The full two-particle vertex can be decomposed apart from
Bethe–Salpeter equations by means of the so-called parquet
equation that can be represented in various equivalent
ways [16]:

�kk′(q) = �ee
kk′(q) + Kee

kk′(q) = �eh
kk′(q) + Keh

kk′(q)

= Keh
kk′(q) + Kee

kk′(q) + Ikk′(q)

= �ee
kk′(q) + �eh

kk′(q) − Ikk′(q) (13)

where Keh
kk′(q) and Kee

kk′(q) are two-particle reducible vertices
in the electron–hole and the electron–electron channel,
respectively. We denoted I = �eh ∩ �ee a two-particle fully
irreducible vertex, that is, a vertex irreducible simultaneously
for both the electron–hole and the electron–electron pair
propagation (multiple scatterings).

The parquet equations hold generally for systems
where the electron–hole and the electron–electron multiple
scatterings are nonequivalent, that is, the corresponding
two-particle irreducibilities are unambiguous and excluding
definitions of diagrammatic contributions. The concept of
the parquet theory based on nonequivalence of two-particle
irreducibility can at best be understood in terms of sets
of diagrams where the addition of functions is represented
by a union of sets of diagrams the functions stand for.
Nonequivalence of the electron–hole and the electron–electron
multiple scatterings means Kee ∩ Keh = ∅. We trivially
have in each α-channel �α ∩ Kα = ∅. Further on, we have
�eh = �eh ∩ � = (�eh ∩ �ee) ∪ (�eh ∩ Kee) ⊂ I ∪ Kee. On
the other hand, Kee = Kee ∩ � = (Kee ∩ �eh) ∪ (Kee ∩Keh) =
Kee ∩ �eh. Hence Kee ⊂ �eh. Combining the above two
relations we obtain �eh = I ∪ Kee from which we reach the
parquet representations via irreducible or reducible vertices in
equation (13), �eh ∪ �ee \ I = I ∪ Kee ∪ Keh = �.

One must be careful when using the parquet decomposi-
tion for noninteracting electrons with only elastic scatterings.

4
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In this case multiple scatterings on a single site are identical for
both channels. Hence, the two Bethe–Salpeter equations (4)
are identical when the one-electron propagators are purely
local. We then obtain �eh = �ee = I. It means
that irreducible and reducible local diagrams coincide and
the concept of two-particle irreducibility becomes ambiguous.
To amend this problem we introduce a stronger full two-
particle irreducibility including also local scatterings where
the electron and the hole are indistinguishable. We denote
this vertex J . The irreducible vertices I,�eh and �ee for
noninteracting electrons should be rewritten in equation (13)
so that we replace vertex I by vertex J . We then have

Ikk′(q) = Jkk′(q) + J 0G+G−
1 − J 0G+G−

J 0, (14a)

�α
kk′(q) = �̄α

kk′(q) + J 0G+G−
1 − J 0G+G−

J 0 (14b)

where J 0 = N−3
∑

kk′q Jkk′(q) and G± = N−1
∑

k G±(k)

are the appropriate local (momentum independent) parts.
Vertex �̄α

kk′(q) is irreducible in channel α but does not contain
successive multiple scatterings on the same site. It is important
that the fully irreducible vertex Jkk′(q) contains only cumulant
averaged powers of the random potential on the same lattice
site so that double counting is avoided.

We now use the symmetries from equation (9) to replace
the two irreducible vertices by a single function. We define

�kk′(q) ≡ �ee
kk′(q) = �eh

kk′(−q − k − k′). (15)

We use this definition in the parquet equation (13) where we
represent the full vertex by a solution of the Bethe–Salpeter
equation (4a). We then obtain a fundamental equation for the
irreducible vertex:

�kk′(q) = Ikk′(q)

+ 1

N

∑

k′′
�kk′′(−q − k − k′′)G+(k′′)G−(q + k′′)

× [�k′′k′(q) + �k′′k′(−q − k′′ − k′) − Ik′′k′(q)]. (16)

It is a nonlinear integral equation for vertex � from an input
I that may have multiple solutions. We choose the physical
one by matching it to a perturbative solution reached by an
iterative procedure with an auxiliary coupling constant λ and
a starting condition �(0) = λI. The iteration procedure for a
fixed coupling constant λ is determined by a recursion formula

1

N

∑

k′′
[δk′′,k′ − �

(n−1)
kk′′ (−q − k − k′′)G+(k′′)

× G−(q + k′′)](�(n)
k′′k′(q) − λIk′′k′(q))

= 1

N

∑

k′′
�

(n−1)
kk′′ (−q − k − k′′)G+(k′′)

×G−(q + k′′)�(n−1)
k′′k′ (−q − k′′ − k′). (17)

In this way vertex � = �(∞) is completely determined
from the input, the fully irreducible vertex λI. A physical
solution for λ = 1 is reached only if the iteration procedure
converges for 0 < λ � 1 and the result can analytically be
continued to λ = 1. This construction of the physical solution

corresponds to the linked-cluster expansion from many-
particle physics [22]. The iteration scheme from equation (17)
is the only available way to reach a physical solution and hence
its convergence and analyticity are of principal importance for
the diagrammatic description of disordered systems. Using
equations (14) we can rewrite equation (16) to another one
for the irreducible vertex �̄ determined from J . The latter
vertex is the genuine independent input. Notice that in single-
site theories with local one-electron propagators we obtain a
solution to equation (17) to be �̄ = J 0.

Equation (16) (alternatively equation (17)) is a funda-
mental equation of motion for the two-particle irreducible
vertex, being electron–hole-symmetric. It is exact as far as we
use the exact fully irreducible vertex I. The corresponding
full two-particle vertex obeys simultaneously both the Bethe–
Salpeter equations in the electron–hole and the electron–
electron channels, equations (4), if �eh

kk′(q) �= �ee
kk′(q).

5. Integrability of the diffusion pole

If we combine equation (15) and the parquet equation (13),
where the electron–hole symmetry, equation (9), is used,
we can represent the two-particle vertex � of noninteracting
electrons in a random potential as

�kk′(q) = �kk′(q) + �kk′(−q − k − k′) − Ikk′(q). (18)

This decomposition into irreducible vertices is exact if elec-
trons and holes are distinguishable quasiparticles (electron–
electron and electron–hole scattering diagrams are topolog-
ically distinct and contribute independently to two-particle
functions), the system is electron–hole-symmetric and the two-
particle fully irreducible vertex I is known exactly.

The irreducible vertex � obeys equation (16) which
replaces the Bethe–Salpeter equations for the full vertex
�. Unlike Bethe–Salpeter equations, equation (16) is
manifestly nonlinear and can pose a restriction on possible
singularities in its solutions. We now demonstrate that, due
to representation (18), the diffusion and Cooper poles from
equation (11) may materialize in the full two-particle vertex
� only if the diffusion pole is present in the irreducible vertex
�.

We need not find the most general form of the low-energy
(ω → 0) singularities compliant with equation (16) but rather
check whether and when singularities from representation (11)
can emerge in solutions of equation (16).

It appears that vertex �kk′(q) contains the diffusion pole
of the full vertex �, �eh

kk′(q) the Cooper pole and the fully
irreducible vertex Ikk′(q) is free of these poles. This fact
follows from an alternative form of equation (16):

�kk′(q) = Ikk′(q)

+ 1

N

∑

k′′
�kk′′(q)G+(k′′)G−(q + k′′)�k′′k′(q)

− 1

N

∑

k′′
[�kk′′(q) − Ikk′′(q)]

×G+(k′′)G−(q + k′′)�k′′k′(q) (19)

5
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where we used the fundamental parquet equation (13) to
represent the integral kernel �. The electron–hole symmetry
leads in the limit q → 0 and ω → 0 to a representation of the
complex conjugate of the full two-particle vertex:

�RA
kk′ (q, ω)∗ = �RA

k′+q,k+q(−q,−ω) (20)

that we use to evaluate the convolution of the diffusion poles
from the full vertex � in the first sum on the right-hand side
of equation (19). We obtain for k = k′ in the leading order of
q → 0 and ω → 0:
1

N

∑

k′′
�RA

kk′′(q, ω)G+(k′′)G−(q + k′′)�RA
k′′k(q, ω)|

−−−−→
q→0,ω→0

1

N

∑

k′′

|ϕRA
k′′kG+(k′′)|2

ω2 + D(ω)2q4
.

This squared diffusion pole must be compensated by the
second sum on the right-hand side of equation (19). It
means that the diffusion pole must be completely contained in
function �kk′(q) − Ikk′(q) = Keh

kk′(q). From the electron–
hole symmetry we then obtain that the Cooper pole must
completely be contained in the function Kee

kk′(q). Consequently
the sum of the diffusion and the Cooper pole from the full
vertex �kk′(q) in equation (11) is already part of the function
�kk′(q)−Ikk′ (q). The fully irreducible vertex Ikk′(q) is hence
free of the diffusion and Cooper poles.

We first prove integrability of the diffusion pole in the
metallic phase with D(0) = D > 0. When inserting the
singular part of the two-particle vertex due to the diffusion
pole we obtain the leading singularity on the left-hand side of
equation (17):

SL
kk′(q, ω) = − 1

−iω + Dq2

× 1

N

∑

k′′

ϕRA
kk′′ϕRA

k′′k′ G+(k′′)G−(q + k′′)
−iω + D(q + k + k′′)2

(21a)

and on its right-hand side

SR
kk′(q, ω) = 1

N

∑

k′′

ϕRA
kk′′ϕRA

k′′k′

−iω + D(q + k + k′′)2

× G+(k′′)G−(q + k′′)
−iω + D(q + k′ + k′′)2

. (21b)

Since the singular term from equation (21a) contains the
complete form of the diffusion pole, the sum over momenta
must not bring any new singular contribution in small
frequencies and is of order O(ω0). To assess the low-frequency
behavior (ω → 0) of the sum over momenta we equal
external fermionic momenta k′ = k and use an asymptotic
representation for the contribution from the singular part of the
integrands:

SL
kk(q, ω)

.= ϕRA
k,−q−kϕ

RA
−q−k,kGR(q + k)GA(k)

−iω + Dq2

× 1

N

κ∑

k′′

1

−iω + D(q + k + k′′)2
, (22a)

SR
kk(q, ω)

.= ϕRA
k,−q−kϕ

RA
−q−k,kGR(q + k)GA(k)

× 1

N

κ∑

k′′

1

[−iω + D(q + k + k′′)2]2
(22b)

where κ is an appropriate momentum cutoff. The two
expressions cannot be more divergent in the low-frequency
limit as (−iω)−1 for any value of the external momenta q
and k. Due to the normalization condition, equation (12),
we find for each vector k a set (of measure one) of momenta
q so that ϕRA

k,−q−k �= 0. If the homogeneous case, q =
0, falls into this set then from equation (22a) we obtain
integrability of the diffusion pole. If not, then for ϕRA

k,−q−k �=
0 we obtain SL

kk(q, ω) ∝ (−iω)d/2−1/(−iω + Dq2) and
SR

kk(q, ω) ∝ (−iω)d/2−2. For low dimensions d � 2, both
functions SL

kk(q, ω) and SR
kk(q, ω) have a stronger divergence

than (−iω)−1 (for q = 0) and equation (17) cannot be satisfied
by any function �kk(q, ω). The diffusion pole can hence exist
in the metallic phase only in dimensions d > 2.

In the localized phase we expect the following low-energy
asymptotics (q → 0, ω → 0) of the dynamical diffusion
constant [18, 19]:

ξ 2 = D(ω)

−iω
> 0 (23)

where ξ is a localization length. Using this asymptotics we
can represent the singular part of the irreducible vertex � as
follows:

�
sing
kk′ (q, ω)

.= ϕkk′

−iω

1

1 + ξ 2q2
. (24)

We utilize the electron–hole symmetry to evaluate the complex
conjugate of the irreducible vertex � in the low-frequency
ω → 0 and momentum q → 0 limit:

�RA
kk′(q, ω)∗ = �RA

−k−q,−k′−q(q,−ω) (25)

and use it to derive a condition for the vanishing of
quadratic singularity of order ω−2 on the right-hand side of
equation (16). After substituting the representation of vertex
� from equation (24) and setting k′ = k and q = 0 in
equation (16) we obtain

1

N

∑

k′′

∣∣∣∣
ϕRA

kk′′ G+(k′′)
1 + ξ 2(k + k′′)2

∣∣∣∣
2

[2 + ξ 2(k + k′′)2] = 0. (26)

This condition can be fulfilled only if the irreducible vertex
�kk′′(q, ω) is free of the singularity due to the diffusion pole
for q → 0 and ω → 0, that is, ϕRA

kk′ = 0 point-wise. The
diffusion pole hence can exist nowhere in the localized phase.

6. Discussion and conclusions

The most severe consequence of integrability of the diffusion
pole is nonexistence of the Berezinski pole in the localized
phase in any dimension. It means that, when approaching the
low-energy limit q → 0 and ω/q → 0 in low dimensions (d �
2), we cannot meet the diffusion-pole-induced singularity. The
localized phase must be reached in a non-critical or a less
critical manner than that of the diffusion pole. It means
that the homogeneous case q − 0 where the Velický–Ward
identity, equation (7), holds is an isolated singular point with no
relevance for spatial fluctuations with q > 0. Theories, such as
the self-consistent theory of Anderson localization of Vollhardt
and Wölfle [23], leading to solutions with a nonintegrable

6
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diffusion pole are in conflict with the Bethe–Salpeter equation
either in the electron–hole or in the electron–electron channel
or with the electron–hole symmetry at the two-particle level.

Nonexistence of the Berezinski pole in the diagrammatic
description of the localized phase has an important conse-
quence on the relevance of criteria determining the diffusion-
less regime. We cannot use the averaged inverse participation
number [8] in the translationally invariant description, since it
vanishes in both the delocalized as well in the localized phase.
Using equation (23) we obtain

P−1
E ∝ 1

N

∑

q

lim
ω→0

(−iω)	RA
E (q, ω) = 0

even in the localized phase, since the weight of the low-
energy singularity of the electron–hole correlation function
	RA vanishes there. In a sense this conclusion is not surprising.
The inverse participation number measures a portion of the
lattice space where the amplitude of the wavefunction of the
electron differs measurably from zero, that is |�i |2 � N−1.
In a translationally invariant description of the diagrammatic
theory in the thermodynamic limit we do not have appropriate
tools to discriminate or prefer locally restricted areas. This may
happen only for finite lattices with fixed configurations of the
random potential breaking the global translational symmetry of
the infinite volume. In fact, it has been known for a long time
that the averaged inverse participation number is not a good
criterion for the determination of the absence of diffusion [8].

Numerical simulations are performed on finite lattices and
they seem to confirm the existence of the diffusion pole with
the weight one near the metal–insulator transition [24, 25]
as well as in the localized phase [15]. However, numerical
simulations can be performed only on rather small lattices
where one cannot effectively reach the diffusive regime q → 0
with ω/q → 0. Numerical studies in [24, 25] calculate the
electron–hole correlation function of a model for the quantum
Hall effect, that is in an external magnetic field without
the electron–hole symmetry. The numerical analysis in [15]
investigates the limit ω → 0 with q/ω → 0 and not ω/q → 0.
As we know [10], the two limits do not commute and the
former has no relevance for the existence of the diffusion
pole. The numerically observed 1/ω behavior reflects only the
Velický identity (7) valid for any configuration of the random
potential.

Studies of Anderson localization on finite lattices never
restore full translational symmetry of the thermodynamic
limit. Eigenvalues of the random Hamiltonian with localized
eigenstates are degenerate. As discussed in the Introduction,
homogeneous shifts of configurations of the random potential
by lattice vectors do not change the spectrum of the underlying
Hamiltonian. If the extent of a localized eigenstate is L lattice
sites then the corresponding eigenenergy is approximately
N/L times degenerate, that is the dimension of the subspace
of the corresponding eigenvalue is N/L. Each eigenvector
from this subspace corresponds to a different configuration
of the random potential. After configurational averaging the
weight of the localized eigenvectors is L/N , vanishing in
the thermodynamic limit. A truly reliable comparison of
numerical results with those from the diagrammatic approach

can be made only if the translational symmetry in the numerical
calculations is fully restored, that is when

∑

i, j

eiq·(Ri +R j )GRA
i j, j i = 0

for each momentum q �= 0 from the first Brillouin zone.
Integrability of singularities in two-particle vertices poses

no restriction on the weight of the diffusion pole in the
metallic phase in dimensions d > 2. The localized phase
in d > 2 is, however, different. There the widely accepted
form of the diffusion pole becomes momentum-independent
due to vanishing of the diffusion constant D(ω) ∼ ω and
hence nonintegrable. The fundamental equation (16) for the
irreducible vertex � cannot lead to a two-particle vertex with
such a singularity. If the diffusion pole in d > 2 survives
in the metallic phase unchanged, with weight one, till the
Anderson metal–insulator transition, there must be a jump at
the transition point at which the diffusion pole abruptly ceases
to exist.

Last but not least, we obtain as a consequence of
equation (16) that the two-particle vertex �kk′(q) in the
metallic phase of the most interesting spatial dimensions 2 <

d < 4 contains, apart from the diffusion and the Cooper pole,
also another low-energy singularity for ω → 0 and |k − k′| →
0. We found that SR

kk(0, ω)
.= (−iω)d/2−2 in d < 4 and hence

a new singularity in vertex �RA
kk′(q, ω) emerges for k−k′ → 0.

Due to the normalization condition, equation (12), it must be
integrable, which is the case for d > 2. This new singularity
is compatible with the decomposition from equation (11) of
the two-particle vertex � into singularities caused by the
diffusion pole. The existence of a new singularity makes either
the weight of the diffusion pole ϕRA

kk′ or the reduced vertex
γ RA

kk′ (q, ω) or both singular with an integrable singularity. A
new singularity in the two-particle vertex indicates that the
averaged two-particle functions in spatial dimensions 2 < d <

4 behave qualitatively differently and have a richer analytic
structure from those in higher dimensions. How far this
singularity influences the macroscopic behavior and transport
properties of disordered systems and, in particular, criticality of
the Anderson localization transition remains to be investigated.

To conclude, we proved in this paper that the diffusion
pole with a dynamical diffusion constant D(ω) can exist in
the two-particle vertex of models of noninteracting electrons in
a random potential invariant with respect to the electron–hole
transformation only in the metallic phase. That is, the static
diffusion constant is positive, D(0) = D > 0, and the lattice
dimension d > 2. An equation of motion for two-particle
irreducible vertices prevents the existence of the diffusion
pole with a linearly vanishing diffusion constant D(ω) ∼ ω

in the localized phase. The existing translationally invariant
descriptions of electrons in a random potential predicting the
existence of such a pole in the localized phase should hence
be revisited. In view of our result, it seems very difficult,
if not impossible, to build up a consistent analytic theory
of Anderson localization with a pole in the localized phase
induced by probability conservation.
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[15] Brndiar J and Markoš P 2008 Phys. Rev. B 77 115131
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